Antiviral Resistance to Enantiomers of 2',3'-Dideoxycytidine Analogues — Common Threads. R. F. Schinazi, 1* R. M. Lloyd, Jr., 1 A. McMillan, 1 G. Gosselin, 2 J.-L. Imbach, 2 C.K. Chu, 3 and J.-P. Sommadossi. 4 VA Medical Center/Emory University, Decatur, GA 30033; 1 University of Montpellier II, 34095 Montpellier, France, 2 Dept. of Medicinal Chemistry, College of Pharmacy, University Georgia, Athens, GA 30602, 3 and University of Alabama, Birmingham, AL 35294, 4 USA.

The development of HIV-1 resistant viruses to (-)-β-L-2',3'-dideoxy-3'-thiacytidine [3TC] in cell culture and in humans was first described by our group. These variants were highly (> 1,000-fold) resistant to 3TC, but remained susceptible to AZT and HIV-1 specific inhibitors. There has been no previous report of development of resistant viruses to (-)- β -D-2',3'-dideoxy-5-fluoro-3'-thiacytidine [D-FTC] and (-)- β -L-2',3'-dideoxycytidine [L-FddC], compounds related structurally to 3TC. D-FTC and L-FddC are cross-resistant with 3TC and (-)-β-L-2',3'-dideoxy-5-fluoro-3'-thiacytidine [L-FTC], although the level of cross-resistance with D-FTC was lower (< 500-fold). Highly resistant viruses were selected in primary human peripheral blood mononuclear cells infected with HIV-1_{LAI}. DNA sequence analysis of the RT gene amplified from resistant viruses consistently identified mutations at codon 184 from Met (ATG) to Val (GTG) for both D-FTC and L-FddC. From these data, we infer that the L-configuration is important for conferring high level resistance to oxathiolane and 2',3'-dideoxycytosine nucleosides at codon 184. However, lower level resistant virus with the same genetic composition can be obtained with certain D-nucleosides. We have also successfully prepared and characterized phenotypically and genotypically for the first time L-FTC-resistant simian immunodeficiency virus (SIV); the M184V mutation was also obtained with this virus. Studies on the pathogenesis of this SIV variant in non-human primates are planned. (Support: DOD, VA, CNRŠ/ISERM, and NIH).

78

Kinetic Analysis of Human Immunodeficiency Virus Type-1 Reverse Transcriptase with Mutations at Methionine 184 in the Highly Conserved YMDD Region. JE Wilson¹, B Caligan¹, A Aulabaugh², S McPherson³, JK Wakefield³, S Jablonski³, CD Morrow³, PA Furman², and JE Reardon¹. ¹Division of Biochemistry and ²Division of Virology, Burroughs Wellcome Co., Research Triangle Park, NC, USA, and ³Department of Microbiology, University of Alabama at Birmingham, Birmingham, Al, USA.

Mutations at methionine 184 in the highly conserved YMDD region of HIV-1 reverse transcriptase have an effect on both viral replication rates and inhibition of viral replication by 1- β -L cytidine analogs. We have previously reported that 1) recombinant M184A RT showed increases in the K_m values for dTTP and dCTP during processive RNA-directed synthesis, and 2) the mutation M184V caused significant increases in K_i values to 1- β -L cytidine analogs. In this study, we present additional evidence that this region is important in catalysis. Steady state enzyme assays were done with the purified wt and variant HIV-1 RT M184A and M184V. M184A RT had a 40-fold increase in the K_m value for dCTP using single turnover conditions during RNA-directed DNA synthesis but not during DNA-directed DNA synthesis. No change in k_{cat} was observed. This indicated that there was a change in the K_d or the k_p induced by the mutation. We also examined the effect the mutation M184V had on the K_i values of 1- β -D and 1- β -L adenosine, guanidine, and thymidine nucleoside analogs. Significant increases in K_i values were observed. Presteady state kinetics was used to analyze the mechanism for 1) the increase in K_m value seen with M184A RT during single-turnover RNA-directed synthesis, and 2) the increase in the K_i values for 1- β -L nucleoside analogs seen with M184V RT .